# 💻 Programming languages > [!danger] 📊 Scientific programming, ML pipelines and data visualization > *Fluent in:* > - Julia > - Python > - R > [!danger] Smart Contract Programming > *Some experience:* > - Solidity > [!danger] Other programming languages > *Fluent in:* > - C++ > > *Some experience, in decreasing order:* > - SQL > - C# > - JavaScript > - bash > - CUDA > - SAS > - Java # Technologies > [!hint] Explored Python packages > > - `scipy` > - `numpy` > - `pandas` > - `torch` > - `marshall` > - `sys` > - `os` > > *Not a package, but good knowledge about:* > - Python C API > [!hint] Explored Julia packages > - `Discord.jl` > - `OpenAI.jl` > - `Flux.jl` > - `Zygote.jl` > > *Not a package, but some knowledge about:* > - Julia dispatch > - Julia metaprogramation (macros) # 🤸‍♂️ Skills and understood concepts > - *Statistics* (classical, asymptotic, bayesian, stochastic process, probabilistic graph models) > - *Optimization* (linear, non-linear, convex, conditioned convexity) > - *Topology, calculus and algebra* (complex calculus, differential geometry, manifolds, Banach space, Function space, Fourier transform, wavelet transform, etc) > - *Linear Algebra* (rotation matrices, diagonalization, eigen-all-the-stuff) >[!example] Machine learning and statistical inference > - Supervised Learning > - Unsupervised Learning > - Distributed Learning and Statistical Inference > - Deep Learning > - Density Estimation, with or without measurement error (KDE, DKDE) > - Hidden Markov Chain model > - Kalman Filters > - Other useful concepts for ML > - Backward propagation > - Automatic differentiation > - Simpson's paradox > [!example] Computer science > - Graph algorithms > - Algorithm correctness proofs > - Algorithmic complexity proofs > - Many data structures, such as hash maps, binary trees, Merkle trees, adjacency list or matrix, chained lists, etc. > [!example] Development > - Git > - Markup languages (JSON, HTML, Markdown, XML) > - OOP > - UML graphs > - REST >[!example] Management and administration >- Scrum